Ca2+-dependent protein kinase11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes.

نویسندگان

  • Li-Na Zhao
  • Li-Ke Shen
  • Wen-Zheng Zhang
  • Wei Zhang
  • Yi Wang
  • Wei-Hua Wu
چکیده

Potassium (K(+)) influx into pollen tubes via K(+) transporters is essential for pollen tube growth; however, the mechanism by which K(+) transporters are regulated in pollen tubes remains unknown. Here, we report that Arabidopsis thaliana Ca(2+)-dependent protein kinase11 (CPK11) and CPK24 are involved in Ca(2+)-dependent regulation of the inward K(+) (K(+)in) channels in pollen tubes. Using patch-clamp analysis, we demonstrated that K(+)in currents of pollen tube protoplasts were inhibited by elevated [Ca(2+)]cyt. However, disruption of CPK11 or CPK24 completely impaired the Ca(2+)-dependent inhibition of K(+)in currents and enhanced pollen tube growth. Moreover, the cpk11 cpk24 double mutant exhibited similar phenotypes as the corresponding single mutants, suggesting that these two CDPKs function in the same signaling pathway. Bimolecular fluorescence complementation and coimmunoprecipitation experiments showed that CPK11 could interact with CPK24 in vivo. Furthermore, CPK11 phosphorylated the N terminus of CPK24 in vitro, suggesting that these two CDPKs work together as part of a kinase cascade. Electrophysiological assays demonstrated that the Shaker pollen K(+)in channel is the main contributor to pollen tube K(+)in currents and acts as the downstream target of the CPK11-CPK24 pathway. We conclude that CPK11 and CPK24 together mediate the Ca(2+)-dependent inhibition of K(+)in channels and participate in the regulation of pollen tube growth in Arabidopsis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AKT2/3 Subunits Render Guard Cell K+ Channels Ca2+ Sensitive

Inward-rectifying K+ channels serve as a major pathway for Ca2+-sensitive K+ influx into guard cells. Arabidopsis thaliana guard cell inward-rectifying K+ channels are assembled from multiple K+ channel subunits. Following the recent isolation and characterization of an akt2/3-1 knockout mutant, we examined whether the AKT2/3 subunit carries the Ca2+ sensitivity of the guard cell inward rectifi...

متن کامل

Lost in traffic? The K+ channel of lily pollen, LilKT1, is detected at the endomembranes inside yeast cells, tobacco leaves, and lily pollen

Fertilization in plants relies on fast growth of pollen tubes through the style tissue toward the ovules. This polarized growth depends on influx of ions and water to increase the tube's volume. K(+) inward rectifying channels were detected in many pollen species, with one identified in Arabidopsis. Here, an Arabidopsis AKT1-like channel (LilKT1) was identified from Lilium longiflorum pollen. C...

متن کامل

Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats

Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...

متن کامل

Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells.

Recent work has indicated that nitric oxide (NO) and its synthesis are important elements of signal cascades in plant pathogen defense and are a prerequisite for drought and abscisic acid responses in Arabidopsis (Arabidopsis thaliana) and Vicia faba guard cells. Nonetheless, its mechanism(s) of action has not been well defined. NO regulates inward-rectifying K+ channels of Vicia guard cells th...

متن کامل

Hydro-alcoholic extract of Matricaria recutita exhibited dual anti-spasmodic effect via modulation of Ca2+ channels, NO and PKA2-kinase pathway in rabbit jejunum

Objective: Several studies have shown the antispasmodic activity of Matricariarecutita without detailing the underlying mechanism(s). The present study was designed to determine whether the antispasmodic mechanisms of M. recutita extract mediated via histaminergic/cholinergic receptors, Ca2+channels, activation of PKA2 and NO release in isolated rabbit jejunum. Methods and Materials: The concen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 2013